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ABSTRACT

Steinberg, Abrsham Meir, Ph.D., Purdue University, August, 1967.
Minimum Sensitivity Optimal Control for Non-Linear Systems. Major
Professor: Violet B. Haas.

Relaxed Variational Techniques are applied to a minimum sensitivity
control problem. Sensitivity of a trajectory is minimized to perturba-
tions in initiel conditions. Rather than using the optimal control that
does indeed exist and that satisfies the final conditions exactly, a
sub-optimal control is used that transfers the system from the given
initial state to an arbitrarily small neighborhood of the given final
state, and that results in a considerably better performance than the
optimal solution. The sub-optimal control is constructed using the
optimal controls of the relaxed problem.

It is demonstrated by an example that a sub-optimal chattering con-
trol obtained for a minimum time problem can be made a function of the
states of the system and thus lower sensitivity to perturbations in
initisl states is achieved &as well as minimum time.

A relation is shown to exist between relaxed problems and singular
control. It is shown that a problem that does no% possess an optimal
solution, but satisfies some genersl assumptions, has a singular

relaxed solution.



CHAPTER ONE

INTRODUCTION

1.1 Motivation

In optimal control problems the Maximum Principle gives necessary
conditions for the optimsl control and trajectories [Pontryagin et al,
ref. 1, Berkovitz ref. 2]. The differential equations representing the
necessary conditions are derived on the assumption that an optimal solu-~
tion does indeed exist. However, except for very speclal classes of
problems, existence of optimel solutions is not guaranteed. It was
shown recently [Werge ref. 3] , under some general assumptions that for
control problems that do not possess an optimel solution it is possible
to construct a sub-optimel solution. Denote the lower bound on the
performance index by N, then the sub-optimel solution will result in a
performence index as close to N as desired. The sub-optimal control
will trensfer the system from the given initial state to an arbitrerily
small neighborhood of the given final staete. Furthermore it was shown
that if final conditions are specified for the system at the terminal
time and an optimel control does indeed exlist for the problem, it might
be possible by relaxing the end conditions to obtain a sub-optimal con-
trol that would result in & considerably better performance than the

optimal .



A general class of non-linear systems where the control is coup-
led with the state variables is treated here. It is desired to trané;
fer the given initisl state to the given final state minimizing an
expression that describes sensitivity of the response of the system

with respect to perturbations in initial conditions.

For such a problem it is possible, by relaxing the final conditions

for the problem, to obtaein & substantial improvement in the perfor-
mance of the system. Rather than using the optimasl control that does
indeed exist and that satisfies the final conditionsﬂéxnctly, one can
use a sub-optimal control that would trensfer the system from the
given initisl state to an arbitrarily small neighborhood of the given
final state, and that results in a considerably better performance
than the optimal solution. This approech is beneficial for problems
vhere it is not essential to satisfy the final conditions exactly.

It is shown that the approach mentioned above applies to syst§m§
vhere "Stebilizing Signal® {Oldenburger ref. 5] can be used for sta-
bilization or improvement of system performance.

1.2 State of Art

1.2.1 Relsxed Variational Problems

Relaxed variationsl problems were introduced by Gemkrelidze [ref.
6j and were discussed in detail bx Warge [ref. 3],gnd.hy Krotov [ref.
7jo The discussions are mainly theoretical and are restricted to the
proof of theorems on relaxed problems.

One application of relaxed variational pgoblems to an engineering
problem was given by Gurman [ref. 8]. The problem discussed is that

of a coasting airplane that is to be transfered from initial to final




conditions in minimum time. It is shown that in order to satisfy a
certain constraint on the state variables, a chattering control is the
accepted sub-optimal control.

To the best of the author's knowledge no other applications were
made of relaxed controls to engineering problems.

1.2.2 Minimum Sensitivity Optimal Control

Classical sensitivity has recently been employed by Dorato [ref. 9]
who discussed the sensitivity of the performance index in the optimal
control problem with respect to plant parameter variations. A methqd
was outlined for computing the performance index sensitivity functionms.
This will be discussed in Chapter Three.

Further results were obtained by Pagurek [ref. 10] through the use
of the Hamilton-Jacobi equation. For linear systems with quadratic
performance indices it was shown that the performance index sensitivity
functions for the open loop case and for the closed loop case are iden-
tical. Witsenhausen [ref. 11] extended Pagurek's results to non-linear
problems. It was later shown by Sirha and Atluri [ref. 12] that Pagurek
obtained his results by considering infinitesimai varietions in the
system parameters. They showed further that if small but finite varia-
tions are used, the closed loop configuration might be superior.

A new definition of relative sensitivity in optimal control pro-
blems was introduced by Rohrer and Sobral [ref. 13].

Sensitivity of terminal conditions to parameter variations was

examined by Holtzman end Horing [ref. 14]. Inclusion of specification



of sensitivity for certain parameters in open loop design was demon-
strated. It is shown in Chapter 5 of this thesis tha% the results ob-
tained by Holtzman and Horing are misleading because of the fact tiut
sensitivity was defined for finite variations in the parameter, and
replaced by infinitesimal wvariations. v

Rissanen [ref. 15] deals with the problem of evaluating the extent
to which system parameters may be changed and still guarantee that
system performance will remain within a specified limit.

1.3 Statement of the Problem

We consider the system of equations

x = £{x,t;u) (1.1)
with initial cond_itions

x(0) = x° (1.2)
where x is an (n-1) vector

x = col [xl(t).' x,(t)s --es xnml(t)]
f 18 an (n-1) vector and u is a scalar function of time. It is desired
to find a function u(t), called the control, be’e]..:ongiﬁs-to s class U of
meagurable functions such that the initial poi);'il;'; x° is transferred by
system (1.1) to some terminal manifold D which may be described by the
equations

gj(x)ao I=1,2, coos m n <n-l1 (1.3)
in the fixed time duration t = T. We shall assume that there exists at
least one function u(t) in the class U of measursble functions which
transfers the initial point to D in the given time T. Such a confrol
will be called "admissible”.

We shall define the sensitivity 8 of the plant to initial




p)
disturbances by the relation
t :
8 = 8(t) = f £,(x,t,u) at (1.%)
o

where fo(x,t,u) is a scalar function. We shall denote S(t) by xo(t) and
add the equation

fco = fo(x,t,u) (1.5)
to system (1.1).

It is desired to minimize xo('r).) Equations (1.1) may represent
plant equations, constraint equations and perturbation equationms.

The vector f as well as the scalar fo may be nonlinear functions
of any or all of thelr variables. In this case it may occur that no
solution. to this problem exists. The performance index xo(T)~will be
assumed to have a lower bound J. However, it may happen that there is
no admissible control for which the performance index is J. However,
the value J may be approximated as closely as desired by appropriate
choice of u(t) under rather general conditions, as will be demonstrated
below. -It will also be shown that in many cases a performance index
which is considerably smaller than J ¢an be cbtained by satisfying
equations (1.3) only approximstely. This will be done by designing a
control u = u(t) for which u(t) assumes only a finite number of values.

A control belonging to U will be termed "suboptimal™ if it trans-
fers the initial state to a small neighborhood of the terminal manifold
while reducing the sensitivity xo(T) ,t° e value close to J or lower.

An € néighborhood of the manifold D is the set of points that contains
D and all points that are at most at a distance € from the manifold.

We shall make the following continuity and boundedness assumptibns



throughout this thesis. There exists an open set V in Euclideé.n n

space, En’ a compact set AdV, and a closed -set B contained in 4 such

that DB, and for all u in U and 0 £ t < T, the following held. '

I. f£(x,t,u) and fo(x,,:t.gu) are continuous in t uniformly in x and u
for all x in V. |

1. |} e(x.tae) - £(y.tu) || € x|l x-y ]

and | fo(x.btau) - fo(Ystsu) I <k l | x-y ”

for all x, ¥ in V, where double bars indicate Euclidean norm snd

gingle bars mean absolute value.

III. There exists a positive constant M such that
[ #(x,t,m) [| + | £, (x,to0) | < M

for all x in V.

Iv. f£(x,t,u) and fo(x,t,u) is comtinuous in (x,t) uniformly in u for

all x in A.

V. f£(x,t,u) and fo(x,’csu) is continucus in u for all.x in V.

The above .a.asuxptiens guarantee that our methods apply. In partie-
uler, assumption III guarentees that x»o(T) has-a finite lower bound and
that no sclution has an escape time T less than T. A solution x(t) of
a differential system x = ¢(x,t), is said to have an escape time T > O
if 1im x(t) = + ». The other assumptions guarantee existence and
unizu::;ss of solutions in the appropriate regions to the system of
differential equations. We shall say more sbout conditiomns I-V later.
1.% Organization of the Thesis

Chapter 2 begins with a discussion of Relaxed Variational Problems.
We show that when problems that do not possess optimal solutions are

releaxed, they become singular. Sensitivity considerations in classical




and optimal control are included in Chapter 3. Zero sensitivity for
systems in the chattering staste is discussed. Bome ;xanple: given in
the literature are discussed. It is shown that definitions of sensi;
tivity for infinitesimal variations may lead to erroneous results.
Minimum sensitivity optimal control is discussed in Chapter 4, and two
examples are presented. In the first example a sub-optimal open loop
chattering control is made a function of the states and thus 'beqome_s a
feedback control. In the other example relaxed variational techniques
are applied to the construction of a sub-optimal comntrol to minimize
sensitivity of a trajectory to perturbations in initial conditioms.

Suggestions and recommendations for future work are given in Chapter 5.



CHAPTER TWO

RELAXED SOLUTIONS IN PROBLEMS OF OPTIMAL CONTROL

2.1 Introduction

Relaxed solutions in problems of optimal control are diacusased.
An algorithm is given for comnstructing a sub-optimal control. The
relation 'bdtvaen existence of an optimal solution and singular solu-
tion of the relaxed problem is discussed. An example is given of
an optimization problem that does not possess an optimal solution,
whereas the relaxed problem is shown to have a singular solution.
2.2 Relaxed Solutions

We augment x, to x and thus redefine x to bs
x = col (xO, Xys ooy xn-l)
We also augment ro to £ and thus redefine
£ = col (fo, £10 oes fn_l)
The problem stated in section 1.3 of this thesis will be called the
"original problem”". Consider the set of points y in n space given by
F(x,t) = {y ]|y = £(x,t,u), u eV}
F(x,t) is defined for each fixed (x,t) with u(t) varying over the get
U. Then condition (1.1) of Chapter 1 of this thesis can be written l.l
x(t) e Plx(t), +] (2.1)
The set F(x,t) is thus the set of all permissible values of x while

passing through the point x at the time t.




We shall introduce the "relaxed problem" for problem (1.1). Let

" @(x,t) be the convex closure, or the convex hull of the closure, of

F(x,t). The relaxed problem coneists in minimizing xo(T) subject to
the assumptions in section 1.3 of this thesis and
% e alx(t), t] (2.2)
The problem is relaxed in the sense that the permissible set of
choices of %(t) is enlarged from F(x,t) to G(x,t).

Define the relaxed system of equations for equations (1.1).
n+l

5‘:’- Z a, () £(x,tu,) (2.3)
1

with the same initial conditions as for the original problem, x(0) = x°.
The scalar controls ai*(t) end ui*(t), i=1, ..., n+l are %o be found
such that
* .
gj[x (T)]ao Y j‘lg noc’n nﬁn"l
* : %
where x = x (t) is the trajectory of (2.3), when qa, = ad»(t) and

J
uy = uj*(t), Jj=1, ..., n+tl, and

x:(T) = Min {xo(T)} (2.%)

aieC

uel

where C is a subset of the set of measursble functions,

ai(t) >0 ? ai(t) =1
1

and each g J(x) is independent of x .
A "relaxed admissible curve" is defined as any absolutely continu-
ous vector function x(t) satisfying conditions (2.3), (1.2) and (1.3).

The following theorems are glven by Wargs [ref. 3].
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Theorem I. If the vector functions f(x,t,u) of equation (1.1) and the
scalar function fo of equation (1.5) satisfy conditions I-V of gecﬁion
1.3 of this thesis, then every absolutely continuous curve x(t), satis-
fying equation (2.3) is the uniform limit of curves xN(t), N=1, 2,...,
satisfying differential equations (1.1) and (1.5) and such that
x‘(o) =x(0), N=1, 2, cco &
Theorem II. If f(x,t,u) and fo(x,t,u) satisfy the assumptions of
Theorem I and if there exists a relaxed admissible curve, then there
exists a relaxed minimizing curve. |
Theorem III. Let f(x,t,u) and fo(x,t,u) satisfy the assumptions of
Theorem I and let B = E . Assume that there exists an original mini-
mizing curve x(t). Then x(t) is also a relaxed minimizing curve.
Theorem ITI does not, in general, remain valid when the assumption
B = En is dropped. This is demonstrated by the following counter-
example, example 2.1, [Warga, ref. 3], and will be demonstrated iater

again by example k.2.

Exsmple 2.1
SRR x(0) = 0
ie = U x2(0) = 0 (2.5)
iﬁ = x;‘ x3(0) =0 xB(T) =0

Minimize x,(T), T > 0, subject to |u|< 1. There exists an original
Cod
minimizing curve ;Ll(t) = xa'(t) = x3(t) = 0.

Since x5(0):13 2, (2) = Ociand ;= x 4 > 0 1f rollovs tha x,(¢) = 0

2
and therefore u(t) = 0.

The relaxed problem is
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*‘l = xaa - cmla - (1-c¢) u22 xl(o) a 0
iy = ou + (1-a) u, xa(o) =0 (2.6)
:":3 n xah x_,’(o) = 0 ; xj(T) = 0

It is necessary to conaider here only two dis instead of four,
since one is eliminated because the set of admissible controls U is
connected and the secomd is eliminated since the comtrol u appears in
only two of the equations (2.5). Consider a special relaxed admissidble

curve with the control u; = 1, u, = -1 snd a = 1/2. Equations (2.6)

become
illsxaz-l xl(O)EO
ia =0 xa(o) =0 (2.7)
i3 = :|:2h xB(O) = 0 3 XB(T) = 0

It follows that x, (t) = -t, x,(¢) = O, xj(t) = 0, x,(T) = -T.
8ince x3(1') = 0 it follows the solution is edwissible. It is in fact
a relaxed minimizing curve since xl = x: - > -1 implies x.l(!') > -T.
Thus, there exists an originsl minimizing curve which is not a relaxed
minimizing curve. Furthermore, xl(ﬁ) < xl(I)

relaxed original

2.3 The Algorithm for Comstructing a Suboptimal Control

It is shown in reference [3] that it is possible to construct a
subeptimal contrel using the optimal contrels of the relaxed problem.
An algerithm to de that is provided by Gamkrelidze-in reference [6].
!hp slgorithm used in this work iz similar to the one given by
Gamkrelidze and 'ia described here.

» ®, .
It is assumed that the optimal controls u, (t) and cz:‘__(‘s)9
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i=1, ..., ntl were found for the relaxed problem. The suboptimal
control for the original problem is constructed as follows. Divide ‘
the time interval [0,T] inte en arbitrary number ¥ of equal subintervals.
Denote the beginhing of the first interval by to’ the end of the first
interval by tl’ end of second interval by t2
tl. Every interval [tk, tk-t-l] is divided into (n+l) subintervals; the

and end of Nth interval by

length of the jth subinterval shall be a*(tk) [tk+l - tk] for

J=1, coop ntl. At the jth subintervel the control u ;j*(tk) is applied.
As N gpproaches infinity, the trajectory described by the original
system will approach the optimal trajectory of the relaxed system and
the performance index of the original problem will apéroach the per-
formance index of the relaxed problem.

2.4 Solving the Relaxed Problem

Given a plant

% = £(x,t,u) (2.8)
with initial conditions

x(0) = x° (2.9)
and final conditiens given by the terminal manifold

gj(x) = 0 J=1, ceop m m < n-1 (2.10)
where gj(x) sre independent of X, and x = col (xo, X5 ooes xn_-l).
Assume that the control u(t) is taken from a set U as before. Find
w(t),in U, 0< t < T, that satisfies

xo*(T) - min (x (1)} (2.11)

where the terminal time T is a constant.
When &-#pintionexists to(2.8), (2.9), (2.10) and (2.11) the Maximum

Principle glves necessary gonditions for the optimal control and
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trajectory. Deﬁne the Hamiltonian
Hwu <A\, ;(x,t,u) > _ (2.12)
where the symbol < , > means dot product, then

X = Y (2.13)

~and 7
K= H (2.1h)

where A = col (hb, Mys ocos hn-l) is the adjoint state wector.
The transvernality condition .

Hdt + <A, dx > = 0 (2.15)

furnishes boundary conditions for . According to the Meximym Principle
the optimal control u*(t) must minimize the Hamiltonian at all times
0<t<T. ‘

An optimal solution for (2.8), (2.9), (2.10) and (2.11) may not
exist. If a solution does exist a suboptimal sclution might result in
better performance than the optimal sclution. In both cases relaxed
solutions must be considered.

Define the relaxed' equations of (2.8)

-+
X = ,Ejl aj(t) f(x,,tguj) = G(x,,t,gaj»uj)
1 (2.16)
+
y aj(t) =1 , aj(t) >0
1
with initial conditions (2.9) and final conditioms (2.10) where x is now
th ( ). Find u, (t), @, (t) that
e augmented vector col Xy Xys coos X,y Fin n‘_j ’ ad &
satisfy

x (T) = Min {x (1)} (2.17)
aj,uj



1k

To solve (2.16), (2.17), (2.9) and (2.10) define the Hamiltonian }
H =<\, G(x,t,a »uJ) > (2‘18)
then
X = G(x,t,a P3N )
37 (2.19)

i = -Hx
According to the Maximum Principle the following must be sstisfied,
it >0
[»] . . . -
% *
H(h,x,t,aj Ly ) = Min (H(,x,x,t,aj,,ud)] J=1,...,n+1 (2.20)
Qa,,u
3
It follows from (2.12), (2.16), (2.18) and (2.20) that every ome of the
controls u J*(t) alsc winimizes the Hamiltonian of the original problem
(2.12) evaluated along the optimal trajectory.

2.5 Relation Between Existence of an Optimal Soluticn and Singular
Solution of the Relaxed Problem '

In many applications it is possible to express u ,j* es a function of
x and A and when substituted into (2.16), (2.19) a new problem arises
which is linear in the controls aj,

It is known from the theory of optimal control that an optimiza-
tion probiem which is linear in the control can have either a singular
solution or a solution with the control on the boundary.

Suppose a system and a performance index are described by a set of
differential equations linear in the control. From the necesaa.fy con-
‘ditions for optimality it is clear that for minimizing the performance
index, the optimal control n*(T) has to assume values on the boundary of
U, vhere ueU. If the coefficient that multiplies u in the Hamiltenian
vanishes for a certain time interval, the optimal control might take

values inside U. The problem is then called singular. If ope of the
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a's is identically equal to 1, on some time interval, that means that
all the other a's are identically zero on this interval and the original
problem has a solution on this time interval. The other alternative is
that none of the aj is identically equal to 1 and a singular solution
should be accepted for the relaxed prcblem. Thus the following theorem
can be stated.

Theorem: The relaxed problem has a singular soluticn if the original

problem does not have an optimal solution.

Proof: The theorem is proven by contradiction. Assume that the original
problem does not possess an optimal solution. It is known frqp the
sufficient conditions, described in section 1.3 of this thesis, that the
relaxed problem does have an optimal solution. If the relaxed optimal
controls aﬁ(t), J=1, oeos ntl do indeed assume values on ﬁhe boundary
of C for the whole fime interval [0,T], then one of the a's, say O >

1 <k < ntl, is identically equal to 1 and the other a's are identically
equal to zero for every subinterval of [0,T]. But if this is the case
then the relaxed problem is reduced to the original problem. Since it
is known that the relaxed problem has an optimal soluticn, so would the
original problem, but this is a contradiction to the basic assumption
that the original problem does not have an optimal solution. The
conclusion is that on at least scme time interval that belongs to [O,T],
the relaxed controls ¢, assume values between zero and one, 0 < aj <1,

J
and this case is singular by definition.

2.6 Example 2.2
The following example demonstrates that for an optimal control

problem that does not have a solution, the relaxed problem has a singular
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solution.
It is first shown that the given problem does not have an optimal

solution. For clarity this problem is called problem A.

Problem A
Consider ‘
£ =% "12 + /3 x,(0) = 0 (2.21)
il =X, +u . xl(o) = -2, xl(‘T) = -1 (2.22)
i2 = -u x2(0) =1, xa(r) = 0.5 (2.23)

with the constraint on the control 0 < u<1.
It is desired to transfer the system state variables from the
given ini'tia.l conditions to the given final conditions and minimize
xo(T), where the terminal time T is free.
The Hamiltonian for this problem is
‘ o A
H=4% X+ %.Z,L(x2 +u) + x2(~u) (2.24)
Now, if
§=§u"§+xl_x2=o ‘ (2.25)

then computing the second derivative of H with respect to u, one obtains

ii;g-%u'%o (2.26)

It is seen from (2.26) that if 0 < u*(t) <1, then u' furnishes 8 mAX-
imum, and not a minimum as required.

Therefore, the following cen be stated. If an optimal control "
does indeed exist for problem A, it can assume only the values O or 1.

When the control is u = 1, one gets:




-
x2' = -1
from (2.28)

x2==-t+cl

and from (2.27)

5:1=-t+cl+1

t2
xlz-E-+(cl+1)t+C2

It follows that

2
xl_-%XQ —x2+k

'Equation (2.31) describes a set of parabolas.

For u= 0 one gets

o

=%

x2=0

From (2.33)

12 = constant

17

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

In order to show that problem A does not possess an optimal solu-

tion, problem B is introduced here.
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Problem B
Consider |
£ =% x° x (0) = 0 (2.35)
il = x, + u xl(o) = -2; xl(T) = -1 (2.36)
X, = -u xa(o) = 1; xa(T) = 0.5 (2.37)

with the same constraint on the control
0<u<x<l

It is shown by Johnson and Gibson [ref. 4] that the optimal con-
trol for problem B is u (t) = xa*(t)w Now it is shown by contradiction
that problem A does not possess an optimal solution. Assume that pro-
blem A does indeed have an optimal solution. From (2.26) it is clear
that u*(t) would assume the values O or 1.

Let us compute the difference in the two perfomance indices (2.21)
and (2.35) for problem A and problem B, respectively, for the same con-
trol u(t) out of the set of admissible controls.

Equation (2.21) is different from equation (2.35) at times when
u(t) = 1 and is the same as (2.35) when u(t) = O. |

From (2.23) it is seen that x_ = constant when u = O. Also, when

2
u =1, it is seen from (2.23) that

%, = -1 (2.38)

or

ax,, = -at (2.39)
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From equation (2.39) it is clear that the total time for which u(t) = 1
is

xa(o) - xa('.r) =1 -0.5= 0.5 (2.40)

It follows that for the assumed optimal control u*(t), or any other
admissible control, that ?ta.kes values of O or 1 only, the performange
indices given by (2.21) and (2.35) differ by a constant equal to 0.5.

It follows that the assumed optimal control u*(t) for problem A
should be a candidate optimal solution also for problem B. However, it
was shown by Johnson and Gibson [ref. 4] that the optimal control for
problem B is singular and that u*(t) = xa*(t).

It remains to be shown for problem B that for any admissible con-
trol that only assumes velues of O or 1, there is ahother é.dmissible
control that only assumes the values O or 1 that provides s performance
index closer to the optimal performance index, the latter cariesponding
to the singular control. | !

In the following it is shown how to construct a control that assumes
only the values O or 1 and which provides a performence index as close
to the optimal as is desired. For that purpose, consider the following

relaxed problem for problem B.

. l1_2
xozaxl

X = x, +aw + (1-a) wy x(0) = =25 x (T) = -1 (2.42)

xo(O) = 0 (2.41)

:’:2 = -0y -(1-a) u.; xa(o) = 13 x2('r) = 0.5 (2.43)
Choose base controls

ulal

and

u2=0
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to get
X, = % xla xo(o) =0 (2.44)
fexyta  x(0)=-2 ;3 x@Ma=-1 (2.45)
%, = -a x,(0) =1 5  x,(T) = 0.5 (2.46)

with the constraint 0 <a < 1.

According to Johnson and Gibson [ref. 4], the optimal control for

(2.44), (2.45) and (2.46) is

o(t) = x, (¢) (2.47)
Let the time it takes to get from the initial to the final point with
the singular control equal Tla According to Warga [ref. 3] it is poss-
ible to construct a sub-optimel control for problem B consisting of u =1
and u = 0 switching according to a*'('b) given by (2.47). The control thus
constructed will not necessarily satisfy the final conditions of the
problem. However, one could get into S by using e sufficiently large
number of switchings (see figure 2.1). The region S is bounded by two
trajectories corresponding to u = 0 and two trajectories corresponding
to u = 1, the point D being its right vertex.

Starting from the initial point the sub-optimal control found in
section 2.3, is used with N so large that the point (xl, x2.) arrives
within the region S. Once in region S, one can get to the final point
with at most two switchings. The contribution of the last step to the
performance index is negligible, since S can be chosen as small as desired.

It will now be shown that the performance index for the trajectory
ABCD of figure 2.1 can be made as close to the optimsl as desired.

According to Warga, the performance index along the trajectory AB

is greater than the optimal by at most e, where €

1 1 > 0 is a pre-set
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constant if only N is large enough. Thus,
Py = Flopt. <6
AN
X2
B C
A \ / - l
D 1+ 0.5
+ t >
-2 -1 X

Figure 2.1. Sub-0Optimal Solution for Example 2.1.

Warga's algorithm is applied to this problem. Divide T, into N

1
T
equal parts. The kth time interval starts at t = ﬁ}» (k-1) and ends at
T
t = EJ-' k. For the kth intervael, apply the contrel u = 1 for time <t
wh * ol
ere T=b-x, , A= g

*

and X, is the expression for the singular optimel solution evaluated at
T

the beginning of the interval i.e., at t = ﬁ-]-‘- > (k-1). For the rest of

the interval A, apply the control u = 0. N is chosen such that B is
inside S, and FI AB " Hopt < €. Along the line BC the added term in
the performance index is

tC tc tc
1 2 1 2 _
5 f xl dt < 5 f 274t = 2 f dt where tB and tc are the
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times the state is at point B and point C, respectively.

From (2.32)
xl = x2 > 0.5
We can choose S = Sl so small that given 63
1-'C
1 2
3 f Xy dt < e3
Along the line CD the added term in the performance index is
% D
1 2 1 2
§f Xy dt<2f 2dt=2f dt.
tC tC tc

Since for the path CD

X, = -1

it follows similarly that S = 82 can be chosen such that

It follows that the time it takes to get from B to C and from C to D
can be made ag small as desired, by choosing S to be the smaller of

the regions S, or S,.

1 2
Thus

PI Pl . <e +e,+e Se

ABCD opt 1 3 '3
or

Flppep - Fopt < €

and the performance index along the path ABCD using an admissible control
that assumes only the wvalues O or 1 can be made as close to the optimal

performance index as desired. If the state of the system does not fall




.Deﬁne €
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into the region S at time Tl, then it would be necessary to use the

algorithm for less than T, seconds to get to the point B, inside 8.

1
Two cases should be considered.

Case (I) O < PI,, - Pt <6

In this case the previous argument holds.
Case (II) PI,p = PIopt
As before

-8; 8>0

PIBC+PICD<€3+eh

PI - I =PIAB-PI

ABCD opt =-|=PIB + PI

opt C CD

Also PIABCD - PIopt >0

2= €% €,

then

0< -8+ €3+€h<€2'

It follows that

Flapcp - Hopt < €&

where € > 0 is a predetermined small quantity.

<-8+e‘3_+eh

Consider the example of problem A. It is now shown that the relaxed

problem for problem A has a singular solution.

Consider
%= 33" +VE %,(0) = © (2.18)
fcl =x, + u xl(O) = =2 3 xl('i‘) = -1 (2.};9)
Jo!a = -u X2(0) =1 3 XZ(T) = 0.5 (2-50)

The constraint on u is 0 < u<1l.

The solution to (2.48), (2.49) and (2.50) is found by solving the

relaxed equations.
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1/2

io = % x12 + aull/2 + (1-a) u, (2.51)

5’:1 =x, +ou + (1-a) u, xl(O) = -2 3 xl('l‘) = -1 (2.52)
X, = -ou, - (1-a) u, x2(0) =1 3 x2('1‘) = 0.5 . (2.53)

with the constraints

0<wy <1

0<u, <1

0<a<1l
'It is necessary to consider here only two d'é instead of four, since one
is eliminated because the set of admlissible controls U is connected and
the second is eliminsted éince the control u appears linearly in both
equation;(a.hQ) and (2.50).

The Hemiltonian for (2.51), (2.52) and (2.53) satisfies

H= -;- 3;1‘2 + mil/e + (1-a) uel/2 + A [x, + au + (2-0) u,]

+ hz[-aul - (l-d) u2] (2.54)
Observe that
_a__a_ﬂ;é_ = -1/4 aul-j/a (2.55)
aul .
and
_@_2_% - 1k (1<) ug-s/a (2.56)
duy

It was shown that equations (2.48), (2.49) and (2.50) do not possess an
optimal solution. Comparing those equations to equations (2.51),(2.52)

and (2.53) it is thus clear that we require @ # O and @ # 1.
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It follows from (2.55) end (2.56) that the only possible minigum

points are u, = 0, W = 1, u, = 0, u, = 1.

Choose u:L = 1

uaao

Equations (2.51, 2.52, 2.53) become

%, =3%° +a (2.57)
5’:1 =X, + Q -(2.58)
5':2 = - (2959)

Define the Hamiltonien

1 2
E=Zx"+a+n [x2 +al + xl(-a) (2.60)
Then
N o= X (2.61)
and
Ny = 2Ny (2.62)
Using the notation of [ref. 4], we have
1_2
I=3%" +NX, (2.63)
F=1l+XA, -\ (2.64)

1 2
We now seek a singular solution of the problem defined by equations
(2.57), (2.58) and (2.59) together with the initial and final conditions.

F=0 = M =2x,-1 (2.65)

F=0 —+-xl+h1=0 —)xla)\l (2.66)



I=0 '-*hx u--xl

I=0 = xl(x2+a) - XX, - MA=0

= N

1 1

Substitute (2.68) into (2.67)

X. X +}-12

1%t 5% =0

xl[xl+2x2]=0

(2.69) provides the singular segments.

From (2.69), (2.58) and (2.59) one gets

(2.67)

(2.68)

(2.69)

(2.70)

*
Using u:L = 1, u2 = 0 end @ = x, one can construct a sub-optimal control

2
for problem A.




CHAPTER THREE

SENSITIVITY IN CONTROL THEORY

3.1 Introduction

Sensitivity considerations play an important role in the design of
automatic control'Systemg. One of the major reasons for using feedback
for systems is to reduéé sensitivity to plant parameter variations and
external disturbances. In this chapter a brief review of sensitivity
consideration in classical control theory is given. Some work is repor-
ted on zero sensitivity systems, and zero sensitivity of relay systems
is discussed when the system 1s in the chattering mode.

The classical definitions of sensitivity are extended to the field
of optimal contfol, Since the formulation of thé deterministic optimal
control problem does not normelly take sensitivity into account, it is
necessary to consider sensitivity separately. Finally, an example
sqlved by Holtzman and Horing is discussed°

3.2 Sensitivity Considerations in Classical Control Theory »

One of‘the ma;n reasons for employing feedback in automatic con-
trol systems is that 1t hes the ability to reduce sensitivity of the
performance of the system to plant parameter variations and to external
disturbances. The study of sensitivity analysis is important because

system parameter values generally differ slightly from the computed
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ones. Mathematical models of systems are‘ideglized representations of
the real systems. Also most systems conpain components phat_change
thgir valugs with time because of aging and wearing. A survey of re-
search on sensitivity of automatic control systems is given by Kokotovic
and Rutman [Ref. 16]. The basic concepts of sensitivity eppeared in the
fundaménéal work of Bode [Ref. 17] which was the beginning of the modern
theory of feedback systems. One would have expected that automatic con-
trol theory would include the study of contrdl system sensitivity.
However with a few exceptions like the books’by Truxal [Ref. 18] end
Horowitz [Réf.HIQD, the question of sensitivity did not even find a
place in the texts on automatic control theory.

Truxel's definition [Ref. 18] of sensitivity is summarized below,
The sensitivity of an oversall gain or transmittance T with respect to

a given paraﬁeter k is defined by the equation

T dLnT
S = T (3.1)

Equation (3.1) can be written as

aT
Si = ai§§ (3°2?

The sensitivity of T with respect to k is the percentage change in T,
dividgd by that percentaege change in k which caused the change in T,
with‘gll phapges considered infinitesimally small; Since only the first

derivatives are involved in the definition of sensitivity, the sensiti-

f

vity is a measure of system characteristics only for very small changes

i

in the parameter. Specifically, the fact that the sensltivity is small

does not guarantee that higher derivatives are also small.

!
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3.3 Sensitivity of Variable Structure Systems

Variable structure systeﬁs are automatic control systems in which
the structure and the parameters of the controller change in corre-
spondence with a chosen logicel law as functions of the state of the
system.

Variable Structure Systems were investigated by Bermant, Emelyanov
and Taran [Ref. 20]. The properties of feedback systems in the sliding
state were examined.

Consider the system described by the following block diagram

(Figure 3.1), where W is the plant to be controlled and Wg igs an

equalizer.
% -
i R W g sen g sgn g W 3
Figure 3.1 Relay Feedback System
Assume that g = ¢, I (3.3)

i=0
where the ci are constants. Also assume that sliding as defined below
does indeed occur. Sliding is defined as the situation when g oscillates
around the value zero wi:th infinitely large frequency and infinitesimally

small amplitude. In this case it can be assumed [Ref. 20] that
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c, 1.0 (3.%)

1=0

d xl
x(t) = col (xl, s v T2 )
and
* n-2 *
x*(t) = col (xl*, i?é— 5 oo s %‘lﬁ- )

Thus, if x.l*(’c) is the solution to equation (3.4), an initiel condition
x(0) will be transferred to the origin following x*(t), independent of
W. As long as sliding exists, the motion of x(t) will follow approxi-
mately that of x*(t), with no dependence on the plant W. It is thus
concluded that the transient response of the system, when it is in
sliding, is insensitive to plant parameter variation of the plant W.

3.4 Definitions of Sensitivity in Optimal Control

Classical sensitivity has recently been employed by Dorato [Ref. 9]
who discussed the sensitivity of the performance index in the optimal
control problem with respect to plant parameter variations. A method
was outlined for computing the performance index sensitivity functions.

A general system was considered.

x = £(x,u,w) (3.5)
where X = col (xl, Xps vees xn) (3.6)
u=col (u, Uy, «o05 B) (3.7
and W = col (wl, Wps ooes wp) (3.8)

where u, are controls and w, are parameters of the system.

J




31
A performance index to be minimized was
T
S = f F(x,u) dt (3.9)
to

It was assumed that an optimal feedback solution exists in the form

u’(t) = ¥(x,v ,t) (3.10)
where LA is the nominal value for the plant parameters. The closed
loop system dynamics were described by

x = £lx, ¥(x,w ,t),v] (3.11)
with s corresponding performence index value S(wo,w), Variations in S
due to plant parameter variations were represented by

AS = S(wo,w) - s(wo,wo) (3.12)

3.5 Discussion of an Example Given by Holtzman and Horing [Ref. 14]

Given ;'co = xo(o) =0 (3.13)

!

*
Find an optimal control u (t), 0 < t < T, that will minimize x (T),

ax, + bu xl(o) =X 3 xl(T) = Xp (3.1%)

where T is fixed
T
x (T) =f w2 at (3.15)

o]

Define sensitivity for this problem as

i L e Al (3.16)

S = ba da

dx, (T)
da
valid for small values of 8a when higher order terms can be neglected.

is

The epproximation of the sensitivity by the derivative

An equation is derived to measure the sensitivity. From (3.1h)
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t £
xl(t) = \/ﬁ il dt + x_ = \/ﬁ (a x + bu) dt + X (3.17)
[ [»]
Take the derivative of (3.17) with respect to a.
ax (v) [ ax, (t)
da- = f {xl + 8 d.a } dt (3018)
[»]
Take the derivative of (3.18) with respect to t.
dax, (t) (t)
[ n e[S 039
Define
dx. (t)
1 A
T da xz(t)

and rewrite equations (3.13) and (3.1hk) to get a set of three equations

2 2

%, = u xo(O) =0 (3.20)
X, = ax, + bu xl(o) = X 3 xl(T) = X (3.21)
%, = ax, + x; XE(O) =0 XE(T) = 8 (3.22)

xa(T) = S in (3.22) puts a constraint on the sensitivity. The optimal
solution will have sensitivity equal to S.

The optimization problem given by (3.20), (3.21) and (3.22) was
solved, [Ref. 14]. It was assumed that b = 1.0 and T = 1.0.

In the formulation given asbove, S could be chosen to be any real
number. For S = O one would get an optimal control and trajectory with
zero sensitivity with respect to a. However this conclusion is ﬁis-
leading since it was shown in the paper that for S = 0, different per-
formance indices result for different values of the parameter a, which

is a contradiction to zero sensitivity, as discussed below.
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ho < 8 = "1000

20 -
a = "‘loo

6 \/
. -
0l S

Figure 3.2 PI as a Function of Sensitivity

As seen from Figure 3.2, for zeroc sensitivity case S = 0 a perfor-
mance “index of 40 is obtained for a = -10 while a value of PI = 6 is
obtained for a = -1.0. If indeed S = O, one could use the control
computed for a = -1.0 for the case a = -10, and thus achieve a lower

rerformance index. The results are misleading because of the fact that

8x, (T)
sensitivity for(a finite perturbation o was approximated by the
ax. (1)
derivative i neglecting higher order terms.



3k

CHAPTER FOUR

EXAMPLES OF MINIMUM SERSITIVITY OPTIMAL CONTROL

Two examples of minimum sensitivity optimal control are presented
here. 1In the first example a sub-optimal open loop chattering control
is made a function of the states and thus becomes a feedback control.

In this configuration the system will follow approximately the optimal
trajectory even when there are small perturbations in the initial states.
In the second example relaxed variational techniqﬁes are epplied to the

" eonstruction of a sub-optimal control to minimize sensitivity of a
trajectory to perturbations in initial conditioms.

-Exemple 4.1. Gurman’s Problem.

The following example was considered by Gurman [ref. 8]. In his
work, the sliding state of the angle of attack of an airplane is con-
sidered. It is desired to transfer the airplane from an initial state
to a final state in minimum time. The state of the system consigts of
the height, velocity and angle between the longitudinal axis of the
airplane and the horizontal plane. It is showm that in order to satisfy

s state varisble constraint

1 2
TP Y S,

where p 1is the density of the atmosphere and v is the velocity of the
sirplane, a sliding regime results. - The sliding control is a sub-

cptimal control for the problem that does not possess an optimal solution
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In this example it is shown that the control when it 1s chattering,
can be expreased as a funection of the state of the system and of the
optimal trajectory of the relaxed problem. It is shown how to choose &
switching function such that the control chatters while leading the
system along the trajectory that satisfies the given state variable

constraint.

The equations of the motion of the system are [ref. 8]:

h=vsgin 6 h(0) = b, n(T) = hT
v=-X - f 8in 6 v(0) = v v(T) = v (.1)
2 o T
baliy+ (T -2)cos 6] 6(0)=6  O(F) = 9
v R3 o) T
where
cL ¢t control
X = X[h, v, CD]: drag
Cp = CD(CL) : dreg coefficient
Y = ¥[h, v, cL]: 1ift
h : height
v t velocity
e : angle between horizontal plane and the
longitudinal axis of the sirplane
f : gravity constant
35 : radius of the earth
The control CL is constrained
c, <¢C ¢
Ll - L L2
where cLl and CL are given constants. The trajectory must satisfy a
2
constraint

o) v S,
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where p(h) is the density of the atmosphere. It is shown [ref. 8] that
for some given initial and final conditions the iimiting optimal tra-
jectory includes the path -‘% P va = Quaxe

This example is concerned only with that part of the optimsl tra-
Jectory that satisfies the state variable constraint %- pv2 = Qpax”
Choose initiel and final conditions that belong to this part of the
optimal trajectory that satisfies %p v2 = Qo Since every part of an
optimal trajectory is also optimal, it follows that the new problem with
the new set of initial and final conditions has an optimal solution that
satisfies Sp v = q . Tt is assumed here that the given initiel
conditions satisfy the constraint % pva = Grox and that it is desired to
follow a trajectory that satisfies the same constraint. A chattering
feedback control will be found for this problem.

- It can be shown {ref. 21] that

1 2 1
X~20V SCDm
1 2 1
YBEDV SCL;

where S is the area of the wings and m is the mass of the alirplane.
Substituting X and Y into equation (k.1) one obtains
h=vsin 6

. 1 2 1
¥=-3pV Scbm-fsine (k.2)

2
1,1 2 1 v .
0 = v[apv S Cp T+ (R_; - £) cos 6]
From Perkins and Hage [ref. 21] pp. 94, 481

Cy=Cy +KC°=0.025+ 0.06C,>
D, L L

pfoy = [1 - 22.6 - 1076 . )3




37

where po is the density of the atmosphere at sea level. The last expres-

sion is approximate and holds only for values of h that satisfy:

14&6-w£h>o

Assume that the 1lift is approximately 10 f when C, = 1

L

1 2.1
3P0 S53°

5 100 m/sec2

-1<C <+1

L
v, = 100 m/sec

and neglecting the term v2/R3 compared to £, (4.2) becomes:

h=vsin @

¥=-2.5 ¢ 107 (1 -22.6 - 10°%0)%3 2 -
b3 2,2

.6.10~h (1L - 22.6 - 10‘6 h) L

- 9.8 8in 6

h.3 ¥

0 = % [o.01 (1 - 22.6 - 10’6 h) Cp, - 9.8 cos 8]

Assume the given constraint te be

%‘— P v2 < 3322 m‘?/sec2

o
and that the initial conditions (4.5) satisfy equation (k.ha)

Lo ¥ = 3322 xnxa/sec:2
o

n(0) = 10"

meters
v(0) = 100 m/sec

6(0) = 0.0 rad.

(4.3)

(4.k)

(k.ba)

(5.5)

{
It is désired to construct a feedback control that will transfer

system (k.3) from its initial state (4.5) along the trajectory satisfying

»-]-'- pvea 3322 1:12/sek:“2
Po

A switching function g(h,v,8) has to be chosen such that
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gL <o (8.6)

If (k.6) is satisfied, g will t.end_tq become smaller when it is
positive and larger when it is negative, and will thus always tend
toward the value g = 0. g ghould be chosen such that g = O satisfies
the constraint (4.ha) and then the system will follow the trajectory
resulting from the comstraint. This is of course true provided other
solutions of g = 0 are net solutions of (k.3).

The following switching function was tried.

g = ¥ (1 - 22,6 - 10'6

- w)*? - 3322 - K(6-6) (.7)
where GN is the angle between the desired trajectory, satisfying the
constraint (k.ha), and the horizontal plane.
Gn is computed as follows. Along the optimal trajectory the

following constraint holds.

Pa-atlov=o0 (4.8)
where a= 226 ° 10'6

b = 3322

It follows from (&.8) that

v /B (1 - an) 32 (5.9)
Taking the derivative of (k.9) with respect to h yields

I w10

%%a 2.15 /5 a (1 - sh)™>°1 (%.11)

But from equation (k.3)

dv 1 S 1 b3 2
& " Taind (-2.5 - 107" (1 - &n) 7 ¥ -
- 610" (1 - an)*3 P ¢,” - 9.8 sin 6} (k.12)

- O N B N gy W & .



'[res. 8] that the base controls for the relaxed problem are C

Substituting (4.8) into (k.12) yields for cL2

L

C, = -1, thus C

231)

%,E- - ;s_iﬁ_é (-2.5 - 10%p -6 - 10* b - 9.8 sin )

%% = ;—;%‘75 {-2.8237 - 9.8 sin 6}

Substitute (4.11) into (%.13) to cbtain

sin 6 [v 2.15 /5 a (1 - ah) ™ 1? + .8] = -2.8237

-2.8237 |
2.15 v/b & (1 - ab)>"% + 9.8

By definition 6 in (k4.1h) is 91!

gin 6 =

-2.8237
2.15 /o av (- a.h)'z“15 + 9.8

The constant K in (4.7) is chosen large enough to satisfy

gin GN =

sen (§5) = - aen (s)
Assume the control is
e = sen (g)
then
&oov - v-b3e (- )P h-K
Substitute (4.3) into (4.18)

9 _ oy (1 - an)t3 (2.5 - 207 (1 - )P VP

av
-6-10% (- a3 v? - 9.86in6) -
- 4.3 a v (1 - ah)3'3 sin 6 -

- K (}V- [0.01 (1 - alzl)h'3 v2 sgn g - 9.8 cos 6]}

k.3 vo

0.01 (1 - sh) >|9.8 cos 6]

39
= 1, (it was shown in

. = 1 and

(4.13)

(h;lh)

(h.15)

(%.16)

(4.17)

(4.18)

(.19)

(%.20)
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K can be ¢hosen large enough to satisfy the condition (4.16).
In our example K = 100 ma/sea2 was used and the result was &

chattering control, C., between -1 and +1 leading the state of the system

LS
close to the state variable constraint (k.ha). The meximum deviation of
g-'— p v from b was 0.15%. The control and trajectory are given in table
°
holo

When ancther switching function g
g=v2(1 - an)*? - p (4.21)

was used, the contrel did not chatter and the trajectory resulted in a8

deviation of 4.0% for %‘— p v° frem the desired value of b. The control
°

and trajectory are given in table 4.2.

It remains to be shown that the only possible solution to g = 0

g=v2 (1-an)*3 b -k (6-6;) = 0 (k.22)
is
v¥@a-atdan (4.23)
and
Q= CH (k.2k)
From (4.22)
-3 v (1 - an)*d - b+ 8y (4.25)
or
d=Lievy (- an)* 3] + -13{: [-4.3 v2 a (1 - an)>*2 8]
6= lov(1- an)t3 (2.5 - 107% (@ - an)*> ¥R -
-6 - 107" (1 - ah)h°3 v CL2 - 9.8 ain 8}] +
+2(-h3av (1-2n) sin 6) (4.26)




Table 4.1 Chattering Control
4.1 when g = v2(l-gh)*> -~ b - 1oo(e-eN)

Trajectory for Example

% heh,_ v 5 g | o -;i-— 2_ 3300
0.0 0 100.0 0.0 | 0.0 | 1.0 0.0
0.1 -2.6 99.97 | =0.25 | 1.4 | 1.0 1.43
0.2 “5.3 99. 95 -0.29 | -1.8 |-1.0 0.63
0.3 -8.0 99. 94 ~0.27 | 2.3 | 1.0 0.46
o4k | -11.0 99.9% | -0.25 | 0.4 | 1.0 0. 92
0.5 | -13.8 99.93 | =0.30 |-0.5 |-1.0 2,17
0.6 -16.2 99.89 |-0.26 | 5.5 | 1.0 2.82
0.7 |-20.0 99.93 | =0.32 {~0.5 [-1.0 0. 52
0.8 -22.0 99.88 -0.28 | 9.5 | 1.0 .88
0.9 -25.0 99.90 |-0.26 | 4.0 | 1.0 3.22
1.0 |-27.3 99.85 |-0.2% | 3.9 |1.0 5,18
1.1 | -30.1 99.84 |-0,29 |-0.8 |-1.0 2,93
1.2 | -32.4 99.78 |-0.25 |52 |1.0 347
1.3 | =35.6 99,82 |-+0.31 }1.6 [|-1.0 0,48
1.4 [-38.0 99.77 |-0.27 7.7 | 1.0 4,18
1.5 [-40.9 99.77 |-0.25 {1.6 {1.0 1. 84




Teble 4.2 Feedback Conﬁrgl‘and
4,1 when g = v°(1l-ah)

Er%jectory for Example

t h-h v 9 q, g
0.0 0 100, 0 0.0 1.0 0.0
0.3 -0, 3 99,19 | «0.06 | =1.0 =37
0.6 -4 1 98. Th «0,19 | =1.0 «Th,
0,9 | =11.5 98.65 «0.32 | =1.0 «85,
1.2 | -22.6 98. 91 Ol | =1.0 =72,
1.5 | =37.0 99. 50 =0, 57 { 1.0 =3k,
1.8 | =53.5 100.27 | =0.55 1.0 22!
2.1 | -=72.8 10C. 99 -0.48 | 1.0 73.
2.k | -8lL.2 101.22 =040 | 1.0 | 109,
2.7 | =92.0 | 101.39 | ~0.33 1.0 | 130,
3.0 |~100.6 101 34 | «0.25 | 1.0 | 135,
33 |-107.0 101.09 =0, 18 1.0 126.
3.6 |-111.3 | 100.63 -0,10 { 1.0 | 101,
3.9 {=113.L 99, 96 «0,0% | 1.0 62,
L2 |=11%.3% 99,10 0, Ol 1.0 9.
L5 |-114.3 98, 37 =0,10 { -1.0 =12,
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Clearly, equation (4.26) @iffers in form from equation (4.3). It
is therefore expected that the sclution of (4.26) together with the
first two equations of (4.3) are not solutions of (k.3).

Example 4.2

In the following example the theory of Relaxed Variational Problems
is applied to a problem of minimizing gensitivity of an optimal tra:_
jectory to variations in initial conditions. It is demonstrated that
relaxing the end conditions allows for a sub-optimal control that

results in a lower performance index than the optimal performance index.

Given
£ = 100 122 + 0.25 ot x(0) = 0 (4.27)
= (w-x) x,(0) = 0 (4.28)
*2 = -3(u - x1)2 x, x2(0) =1 (4.29)
%5 = x12 x5(0) = 0 3 x;(0.1) = 0 (k.30)

It is desired to find a control u*(t) such that minimizes xo(T),
vhere T = 0.1 i3 the terminal time.
Equation (4.28) is the plant equation. Equation (4.30) forces a
constraint on the trajectory. -
xl(t) =0 (4.31)
Equation (4.29) is a linearized perturbation equation for equation
(4.28).

B[(u"xl)3]
8 il =T 8 X (&.32)
8% = -3 (u- )% 8 x (4.33)

Defining x, s x, reduces equation (4.33) to equation (4.29).

It is assumed that there might be a perturbstion of msgnitude 1 in



the initial condition and thus
x2(0) = 1.0
The optimal control problem thus formulated will be called the ‘
original problem. The original problem has only one admissible control,
w*(t) = 0, that transfers the initial state to the final state and is
therefore also the optimal control for the problem.

From equation (4.30) it is clear that x; = O and from (4.28)

w(t) =0 (k.34)
The optimal performence index considering :"ca = 0 from (4.29) is
0.1 .
xo(Oal) = f 100 dt = 10 (4.35)
0

The relaxed control prcoblem will be defined and solved below. It
will be shown that the performance index for the relaxed problem is con-
siderably lower than the one for the original problem. A sub-optimal
control with a finite number of switchings will be constructed for the
original problem and it will be shown that the performance index thus
obtained is still considersbly lower than the optimal. This will be
done by sacrificing the terminal constraints.

Define the relaxed equations for (4.27), (4.28), (%.29) and (4.30).

x o = 100 x22 + 0.25 [alulh + 01211‘,;L + (1—al~a2) u}h] xo(o)ao
= o) + ol P e ) gn x) (0)=0
%, = -31:2[(71(“1-xﬂ_)e + ct‘?((ue-x:l)":‘> + (l-al-az)(uB-xl)zl xe(o)al
i3 = xla X3(0)==0 X3(0,1)=0

It is desired to minimize x °('J;‘) where T = 0.1 is the terminal time.

From the fourth equation and from initial and final values it is




I
1

k5
clear that X, = 0 and that il = 0. Applying the Minimum Principle to
this problem we f£ind that the Hamiltonian satisfies:

H= 100 x22 + 0.25 [cflulh + <312112 h + (1-a1-a2)u3h]
- %o {[”1“12 +ou® (1'°ﬁ,'°‘2)“32] '
If any one of the a's is zero, @ =0, a,= 0 or (1-al-a2) = 0,

2
then the problem reduces to the problem discussed below eguation (l&.36_)

vith only two a's. Assume none of the a's is zero, then applying the

necessary conditions the following must hold

%%’O‘l("lj's"axa“l)’o

Jo): 3
Bu,, ~ ap(uy” - 8y x5 uy) = 0
oH

3
i (1-a-0,)(ug” - 61y x5 ug) = 0
Since it was assumedalsfo, a294 0, 1 -a °0527‘ 0, then the
following must hold
3 .
%o -Gy xp w20
u23
3.6 x = 0
U3 2 %2 %
This results in
u1=00ru1= \/Eizxa if >~2x2>0

u2=00ru2=_\/5\:‘ s Xp if x2x2>0

-6}\2x2u2=0

+ 4+

+

u3=Ooru3=_\/'5>»2x2 if k2x2>0

Also



o
? 0 O

If }‘2 x, <0, W o= u, = u3 = 0 is the only solution. Assume

) 4

s X5 > 0, then

n
g—zz - 6@\,2 x2<0
o

foru1= 0 and

3w

5——2-=12a).2x2>0
!

for ul = ~g/3>:2 x2 and for u.l = - \/Bxa x2 .
321.[ and for aEH
A 2 o) 2

2 b

The same can be done for with the result

*

lJ::’l‘
[}

u, = +

i

272

:

and u3 =+ VO, X,
It is clear that at least two out of the three controls Uy, Uy, and

u, have to be identical, therefore it is sufficiqnt to use only two con-"

3 :
trols v and u, and two a's, O and (_1-a). This is shown in equation
(h°56).,

% =100 x.2 + 0.25 [ow.  + (1-0) w,*] x (0) = 0

0 2 ° oy 2 o

£ = afu - x) + (1-0)(u, - ) x(0) =0 (.36)

iy = -3 xplo(u -x )2 + (1-a)(uyx)?] xy(0) = 1
f‘} = "12 x3(o) =0 xB(Ool) =0

It is desired to minimize xo('l‘) where T = 0.1 is the terminal time.

Applying the Minimum Principle to -this problem we find that the




W7
Hamiltonian satisfies
H= 100 x22 + 0.25 [« ulh + (1-a) uzh] +
#aglaley ) + (1-a)(uy-x, )’ +
+ ['3"2[“(“1“’&)2 + (1-a)(u2-x1)2]] ,'
\
+ )\3' xl ’ (h‘37)
From the fourth equation of (h.36) it follows that
x, 20 (4.38)
thus
% =0 (4.39)
and from (4.38) and the second equation of (4.36) it follows that
a ul3 + (1-@) u, = 0 (4.40)
Using (4.38) and (4.40), the Hamiltonian (4.37) can be rewritten.
H = 100 x22 + 0.25 (o 1;\1lt + (1-a) uzh] +
+ My (3xpla w® + (1-0) u,21) (.41)

Applying the necessary conditions the following must hold.

%ﬁ-l- = Cz(u]_3 - 6)».2 x, ul) = 0 (k.42)

A similar expression can be written for the partial derivative of H
with respect to Uy

Two cases are to be considered for (k.42).
Case I: a=0

The case when @ = O is of no interest, since 1n' this case the
rela:;:ed. equations (k.36) reduce to the original equations (4.27), (4.28),
(4.29) and (4.30), and that problem was already solved with

* *

u, = u =0

2



Case II: a0

and
3
'D.l - 6%.2 X, ul = 0
The solution to (L.%43) is

u =0
ul = \/3{2 x2 when ).,2 x2 >0

u1 = -‘/3x2 x2 when 7&2 x2 >0

(5.43)

(b.kb)

(4.45)

(4.46)

Assume A\, X, > 0, which turns out to be the case in the numerical

2 7e

solution, and compute the second partial derivative of H with respect

to ulo
3n
-a——ulaﬂ a(3u12 - 6)s2 x2)

Qfgé, - 6a ke X, <0
o)

bl

forulmo

and
3%n
6u12
for u:L = \/552 x2 and for u:L = - \/3k2 x2 o

Thus if A

ﬂlza}\.ex2>0

X, > 0,

272
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(4.47)

(4.48)

(b.h9)

(k.50)



k9

and
- BT, | (h.51)
are minimum points for the Hamiltonian, and u = 0 is a maximum point
and is therefore discarded here.
If’he x2 were negative, u* = O would have to be used.
The seme argument starting with equation (4.42) can be repeated for

u, with the results

2 |
ua* =\/6K2 X, (k.52)
end
W' = - /B %, (%.53)

Choice of Signs of the Control

, *
It is now shown, that if u1 is chosen to be positive
*
w o= Ve, X,
*
then U, hag to he chosen to be negative
*
RV
This is shown by contradiction. From equation (k.4O)
3 - 3.
aw’ + (1-a) u’ =0 (k.5k)
A ¥au 2B X , th
ssume w, =u, = o ¥p » then
3
(\/Exa x2) {a+ (1-a)] =0
Since /EKQ X, # 0, it follows

a+ (1-a) = 0
which is a contradiction.

Computation of &

From equation (4.40)




a ul3 + (1-a) u23 = 0

- Choose
=V %
and
vy = - VB, X,

Substitute (k.56) and (4.57) into (4.55)
o [\/Exe x2]3 + (1-o) [-\/B:k2 x2]5 = 0
[ /B, %) la- (1-0)] =0

Since ,/6K2 X, # 0 for 0 <t <T, it follows
a-1l+a=0
a= 0.5

The Adjoint Equation

From (4.41) one gets

Xy= - %g- = - 200 x, + 3n, [a “12 + (1-a) u22]

2
Substitute
2 2
'U..l =u2 =6K212
a=OI5

to get

N, = ~ 200 x. + 18 xga X

2 2 2

From the third equation of (4.36) and (4.38)

ie = -3x2 [au 2, (1-o) u22]

1
Substitute (4.61) into (4.63) to get

L 2
%, = -18 Xy xg

Thus the following two point boundary value problem is to be solved.

50

(%.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
(4.63)

(k4.6k)
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Equations (4.62) and (4.64) are recopied. |
%, = -18 %, x,? x,(0) = 1.0 (4.65)
X, = -200 x, + 1817 x, A,(0.1) = 0.0 (4.66)

The final condition for A, is obtained from the transversality
condition, noting that x, at the terminal time is free.
Once equations (4.65) and (4.66) are solved, the performance index

for the relaxed problem cs.nAbe computed from the first equation of (4.36)

% = 100 x22 + 0.25 [a ulh + (1-a) u,;‘] (&.67)
Substituting (4.61) into (4.67) results in
£ = 100 x22 +9.01,2 x22 (4.68)

Rumerical Solution of the Two Point Boundary Value Problem

A Gradient Technique was employed for the solution of the two point
boundary value problem, equations (4.65) and (4.66).

Two adjoint equations are constructed for (4.65) and (4.66)

5 %, = 32_2 [-18 A, x,%] 8 x, + ga; [-18 1, 218y, (4.69)

N

. 2
5*2‘&2 [-200 x +18x2 x2] dx, +

2 2

+ 3-?-2- [-200 x, + 18 xga x] 82, (4.70)

(4.69) and (4.70) become

=-36r, %, 8x -18x22°sx2 (k.T1)

3 x 2 2

2

° 2
8x2=(-200+18}\2)°8_;F2+56h2x2°8)~2 (k.72)

Define Y, = o] X,

y2=8)~2
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then (4.71) and (4.72) become
&i = [-36 Ny x2] vy * (-18 x22] Yo yi(o.l) = 1.0 (4.73)
¥, = [-200 + 18 x22] ¥yt [36 Ay x2] Y, yé(o.l) = 0.0 (b4.7h)

The iterative technique works as follows. A guess is made for
x2(0.1) in equation (4.65). Equations (4.65), (4.66), (4.73) and (h4.T4)
are integrated backwards in time, from t = 0.1 to t = 0. A correction

is made for the new guess xa(o.l).
A x,(0.1) = 5;%67 [1.0 - x,(0)] (%.75)

Convergence using this technique is fast and is obtained in about
5 iterations.

Results

For the original problem, the performance index obtained was (see
equation (4.35))

x,(0.1) = 10.0 (4.76)

The performance index obtained for the relaxed problem was
xo(O.l) = 2.75 (&.77)
The last figure shows a significant improvement of the performance
of the relaxed problem over the performance of the original problem.
For the original problem it is possible to come close to the optimal
performance index of the relaxed problem by applying a sub-optimal
control to the original problem. When such & control was applied to
the original problem using 100 switchings a performence index of
xo(O.l) = 2.82.

was obtained. The final value of x, was

3
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x5(0.1) = 0.6 - 107

The sub-optimal control shows & great 1mprovem;n§ compared_to thg
original performance index for the original problem, and a degredation
of only 2.5% compared ﬁo the ideal performance index of the relaxed
system.

When only 10 switchings were allowed for the sub-optimal control,
a performance index of

x,(0.1) = 3.03
was obtained. The final value for X5 Was xB(O.l) = 0.032.

Figure 4.1 shows the relaxed controls ul*(t) and u2*(t), and the
sub-optimal control for the original problem, consisting of only 10
switchings. Figure 4.2 shows a comparison between xa(t) obtained for
the relaxed problem and xa(t) obtained for the original problem with
the sub-optimal control that is shown in Figure k.1.

Game Theory Approach'to the Problem

It was assumed before that the error in the initial condition,
xa(O), was 1. In general the error is not knbﬁn and it is desirable
to minimize sensitivity with respect to an unknown initial perturbation.
The following question arises. Is it possible to find the optimal
control for the worst error, x2(0), when x2(0) is limited, say between
0 and +1%

0<x,(0) <1
For this example three values of possible errors were assumed.
I. x2(0) = 1.0

I x,(0) = 0.5

III. xe(o) = 0.0
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For every one of the three cases, the corresponding optimsal con-
trol was found. FEach one of the three optima; controls was applied
three times to the relaxed system for x2(0) = 1.0, xa(o) = 0.5 and
xa(o) = 0.0. Thus the experiment resulted in 9 different values of the

performance index. These were tabulated in Table 4k.3. The first row

Table 4.3 Minimaex Solution for Example 4.2

x2(0)=l.0 x2(0)=0.5 x2(0)=o.o —

u computed 2.75 1.53 1.12 2.75
for x2(0)=1.0 min-max

u computed 346 1.15 | o0.39 3,46
for x2(0)=0.5

u computed

2.75 1.5 0.0
min mex-min

in Table k4.3 ébﬁéists.g£.$héwi§1ues of the verformance index where the
optimal control for case I was spplied to the relaxed system with
xa(o) - 1.0, x2(0) = 0.5 and xa(o) = 0.0 respectively. For the second
row the control computed for case II was used, and for the third row
the control computed for case III was used. When min-max and max-m;n
velues are computed for the rows andbphe colums”of Table k.3 it is
clear that |

min max PI = max nin PT = minimax PI
u xa(o) x2(0) u

The corresponding control is the optimal control computed for case I.




5T
Thus in the sense of“éane theory, xa(.o) =2 1.0 is the __vyo;st initia.l_l
perturbation out of the three possibilities x2(0) = 100,..12(:0) = 0.5
and xa(o) = 0.0, and the corresponding control is the best control.
Thus, if it is known that the possible perturbations for the
initial :cmdition, x2(0), can be either xa(o) = 1.0, xa(o) = 0.5 or
xe(o) = 0.0, then one should use the control computed for xa(o) = 1.0

and in the worst case the performance index for the relaxed problem

will not be greater than 2.75.



CHAPTER FIVE

SUMMARY AND CONCLUSIONS

5.1 Summary
Relaxed Variational Techniques were applied to a minimum

sensitivity control problem. The problem does indeed possess

an optimal solution but it is possible, at the sacrifice of not
satisfying the final conditions exactly, to obtain a considerably
better performance using a sub-optimal control. The sub-optimal
control is constructed using the optimal controls of the relaxed
problem. An example of minimum sensitivity was shown demonstrating
the application of the relaxed controls to the construction of

the sub-optimal control.

It was demonstrated by an example that a sub-optimal chattering‘

control obtained for a minimum time problem can be made a function
of the states of the system and thus minimum sensitivity to
perturbation in initial states is achieved as ﬁell as minimum time.

A relation was shown to exist between relaxed problems and
singular control. It was shown that a problem that does not possess
an optimal solution has a singular relaxed solution.

5.2 Suggestions for Further Work -

It was shown that a problem that does not possess an optimal
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solution has & relaxed singular solution. Thus, in order to find the
sub-optimal control it is necessary to solve a singular control prob-
lem. It seems therefore important to find efficient numerical tech-
niques suitable for solving optimal control problems that have
singular solutions.

In example 2.2 we saw that by a proper choice of the form of the
perfbrmﬁnce index one can get a problem that has an optimal solution
(if the performance index is quadratic in x and u), & singular solu-
tion (if u does not appear in pr pe;fprgance index) or no solution
at all (as in example 2.2). It seeﬁs iiﬁei& that singular problems
are a borderline case between problems that possess optimal solutions
and prdbleﬁs that do not have optimal solutions. Further research is
needed in this area. -

Sensitivity in exémpie héﬁ”wds‘defineg,fb; a speéifié ;ase. It
would be an important contribution to .find a control that ﬁbuld be

optimal for arbitréry initial perturbation.



LIST OF REFERENCES




10.

11.

12.

LIST OF REFERENCES

Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and
Mishchenko, E. F., The Mathematical Theory of Optimal Processes,
John Wiley and Sons, New York,1962.

Berkovitz, L. D., "Variational Methods in Problems of Control and
Programming," J. Math. Anal. and Appl., Vol. 3, pp. 145-169,
August, 1961. N

{

Warga, J., "Relaxed Variational Problems," J. Math. Anal. and Appl.,
Vol. &, pp. 1l1l1- 128 1962. .

Johnson, C. D., and Gibson, J. E., "Singular Solutions in Problems
of Optimal Control,” I1.E.E.E. Trans. on Automatic Control, Vol. AC-8,
No. 1, pp. 4-15, 1963. .

L €
Oldenburger, R., "Signal Stabilization of a Control System," Trans.
ASME, Vol. 79, pp. 1869-1872, 1957.

Gamkrelidze, R. V., "Optimal Sliding States," Soviet Math. Doklody,
NO. 5, pp 390-395’ 1962

Krotov, V. F., "Methods for Solving Variational Problems, II.
Sliding Regimes," A.I.7., Vol. 24, No. S, pp. 581-598, May, 1963.

Gurman, V. I., "A Method for the Investigution of One Class of
Optimal Sliding States,” A.I.f., Vol. 26, No. 7, pp. 1169-1176,

July, 1965.

Dorato, P., "On Sensitiwvity in Optimal Control Systmes," IEEE Trans.’
on Automatic Control, Vol. AC-8, pp. 256-257, July, 1963.

Pagurek, B., "Sensitivity of the Performance of Optimal Control
Systems," IEEE Trans. on Automatic Control, Vol. AC-10, pp. 178-180,
April; -1965.

Witsenhansen, N.S., "On the Sensitivity of Optimal Control Systems,”
IEEE Trans. on Automatic Control, Vol. AC-10, pp. 495-M
October, 1965. ~

Sinha, N. K., and Atluri, S. R., "Sensitivity of Optimal Control:
Systems," Proceedings, Fourth Annual Allerton Cpnference on Clrcuit
and System Theory, October 5-T, 1966




13,

1h.

15.

16.

17.

18.

19.

20.

21.

61

Rchrer, R. A., and Sobral, M., "Sensitivity Considerations in
Optimal System Design," IFEE Trans. on Automatic Control, Vol. AC-D,
pp. 43-48, January,1965.

Holtzman, J. M., and Horing, S., "The Sensitivity of Terminal’
Conditions of Optimal Control Systems to Parameter Variations,"
IEEE Trans. on Automatic Control, Vol. AC-10, pp. 420-426,
October 1G65.

Rissanen, J. J., "Performance Deterioration and Optimum Systems,"
IEEE Trans. on Automatic Control, pp. 530-532, July, 1966.

Kokotovic, P. V., and Rutman, R. S., "Sensitivity of Automatic
Control Systems (Survey)," A.I.T., Vol. 26, No. k4, pp. 730-T50,
April, 1965,

Bode, H. W., Network Analysis and Feedback Amplifier Design, Van
Nostrand, Princeton, New York, 1945.

Truxal, J. G., Automatic Feedback Contrel Systems, MeGraw-Hill,
New York, 1955.

Horowitz, I. M.; Synthesis of Feedback Systems, Academic Press,
1963.

Bermant, M. A., Emelyanov, S. V. and Tersn, V. A., "Motion of
Variable-Strucutre Systems in the Sliding State," A.I.T., Vol. 26,
No. 8, pp. 1336-1247, August, 1965.

Perkins, C. D., and Hage, R. E , Airplane Performance Stability
and Control, Wiley, 1949.




TR—EE66—1

TR—EE66-2

TR-EE66-3

TR—EE66—4

TR—EE66-5

TR—-EE66-6

TR-EE66-7

TR-EE66-8

TR—EE66-~9

TR-EE66-10

TR-EE66-11

TR-EE66-12

TR-EE66-13

TR-EE66-14

TR-EE66-15

TR-EE66-16

TR-EE66-17

TR-EE66-18

TR-EE66-19

TR-EE66-20

RECENT RESEARCH PUBLICATIONS
SCHOOL OF ELECTRICAL ENGINEERING
PURDUE UNIVERSITY

TOWARD BRAIN MODELS WHICH EXPLAIN MENTAL CAPABILITIES — (Report No. |)
R. J. Swallow, Support: E. E. Department Research

ON THE ASYMPTOTIC STABILITY OF FEEDBACK CONTROL SYSTEMS CONTAINING A SINGLE
TIME-VARYING ELEMENT
Z. V. Rekasius and J. R. Rowland, NASA Institutional Grant (SUB-UNDER NRG 14-005-021) PRF
#4220-52-285, January, 1966

ANALOGUE DEMODULATION ON A FINITE TIME INTERVAL

J. C. Hancock and P. W. Brunner, NSF Grant #GP—2898, PRF #3955—50—~285, April, 1966
STEADY STATE ANALYSIS OF LINEAR NETWORKS CONTAINING A SINGLE SINUSOIDALLY
VARYING ELEMENT.

B. J. Leon and J. V. Adams, Grant #GK26, PRF #4108~50~285, May, 1966

CYBERNETIC PREDICTING DEVICES
A. G. Ivakhnenko and V. G. Lapa. Translated by Z. J. Nikolic, April, 1966

ON THE STOCHASTIC APPROXIMATION AND RELATED LEARNING TECHNIQUES
K. 8. Fu, Y. T. Chien, Z. J. Nikolic and W. G. Wee, National Science Foundation GK—696,
PRF #4502, April, 1966
JOINTLY OPTIMUM WAVEFORMS AND RECEIVERS FOR CHANNELS WITH MEMORY
J. C. Hancock and E. A. Quincy, NSF GP—-2898, PRF 3955 and NASA NSG-553, PRF 3823,
June 1966
AN ADAPTIVE PATTERN RECOGNIZING MODEL OF THE HUMAN OPERATOR ENGAGED IN
A TIME VARYING CONTROL TASK
K. S. Fu and E. E. Gould, National Science Foundation Grant GK—696; PRF #4502, May, 1966

ANALYSIS OF A WIDEBAND RANDOM SIGNAL RADAR SYSTEM
G. R. Cooper and Ronald L. Gassner, National Science Foundation Grant GK-189 PRF #4243,
August, 1966.

OPTIMAL CONTROL IN BOUND PHASE-COORDINATE PROCESSES
J. Y. S. Luh and J. S. Shafran, NASA/JPL No. 950670, PRF #3807, July, 1966

ON THE OPTIMIZATION OF MIXTURE RESOLVING SIGNAL PROCESSING STRUCTURES
J. C. Hancock and W. D. Gregg, NSF GP-2898;—PRF #3955; NASA NGR—15-005—-021;—PRF #4219,
October, 1966.
OPTIMAL CONTROL OF ANTENNA POINTING SYSTEM
J. Y.S. Luh and G. E. O’Connor, Jr., NASA/JPL No. 950670; PRF #3807, August, 1966
DESIGN OF LARGE SIGNAL SETS WITH GOOD APERIODIC CORRELATION PROPERTIES
G. R. Cooper and R. D. Yates, Lockheed Electronics Company, Contract #29951, PRF #4195,
Se ptember, 1966

A PRELIMINARY STUDY OF THE FAILURE MECHANISMS OF CdSe THIN FILM TRANSISTORS
R. J. Schwartz and R. C. Dockerty, U.S, Naval Avionics Facility, N0016366C0096 A 02, PRF
#4850—53-285, September, 1966

REAL-TIME ESTIMATION OF TIME-VARYING CORRELATION FUNCTIONS
G. R. Cooper and W. M. Hammond, NSF Contract No. GK—-189; PRF #4243-50-285, October, 1966

ON THE FINITE STOPPING RULES AND NONPARAMETRIC TECHNIQUES IN A FEATURE-
ORDERED SEQUENTIAL RECOGNITION SYSTEM
K. S. Fuand Y. T. Chien, National Science Foundation GK~696, PRF #4502, October, 1966
FAILURE MECHANISMS IN THIN-FILM RESISTORS
H. W. Thompson, Jr. and R. F. Bennett, Naval Avionics Facility, Contract No. N0016366 C0096;
Task Order No. A02, October, 1966
DISTRIBUTION FREE, MINIMUM CONDITIONAL RISK LEARNING SYSTEMS
E. A. Patrick, Air Force Avionics Laboratory (AVWC), Contract AF 33 (615) 3768, November 1966
THRESHOLD STUDY OF PHASE LOCK LOOP SYSTEMS
John C. Lindenlaub and John Uhran, NASA Grant NsG-553, November, 196€
A STUDY OF LEARNING SYSTEMS OPERATING IN UNKNOWN STATIONARY ENVIRONMENTS
K. S. Fu and Z. J. Nikolic, NSF Grant GK-696, PRF 4502, November 1966



TR-EE66-21

TR-EE66-22

TR-EE66-23

TR-EE66-24

TR-EE67-1

TR—EE67-2
TR—EE67-3

TR—-EE67-4

TR—-EE67-5

TR—EE67-6

TR-EE67-7

TR-EE67-8

TR-EE67-9

RECENT RESEARCH PUBLICATIONS
SCHOOL OF ELECTRICAL ENGINEERING
PURDUE UNIVERSITY

(Continued from inside back cover)

FIVE RESUL TS ON UNSUPERVISED LEARNING SYSTEMS
E. A. Patrick, G. Carayannopoulos, J. P. Costello, Air Force Avionics Laboratory (AVWC), Wright
Patterson Air Force Base, Contract AF 33(615)3768
THE RADIATION PRODUCED BY AN ARBITRARILY ORIENTED DIPOLE IN AN INFINITE,
HOMOGENEOUS, WARM, ANISOTROPIC PLASMA
Floyd V. Schultz and Robert W. Graff, Joint Services Electronics Program, Contract
ONR N00016-66-C0076—-A04
HARMONIC GENERATION USING THE VARACTOR CAPABILITIES OF THE PLASMA SHEATH
R. A. Holmes and R. T. Hilbish, Joint Services Electronics Program, Contract
ONR N00016-66-C0076—-A04
AN INVESTIGATION OF THE INTERFACE STATES OF THE GERMANIUM-SILICON ALLOYED
HETEROJUNCTION
H. W. Thompson and A. L. Reenstra, Joint Services Electronics Program, Contract
ONR N00016-66—-C0076—-A04

PARAMETER ESTIMATION WITH UNKNOWN SYMBOL SYNCHRONIZATION

J. C. Hancock and T. L. Stewart, NSF Grant GP-2898, PRF 3955-50-285, January 1967
NONLINEAR OSCILLATION OF A GYROSCOPE

Chikaro Sato, PRF 4891, National Science Foundation Grant No. GK-01235
ON THE DESIGN OF SPECIFIC OPTIMAL CONTROLLERS

V. B. Haas and S. Murtuza, NASA, NGR 15-005-021

ON THE ANALYSIS AND SYNTHESIS OF CONTROL SYSTEMS USING A WORST CASE DISTURBANCE
APPROACH

V. B. Haas and A. S. Morse, NASA, NGR 15-005-021

ANALYSIS AND SYNTHESIS OF MULTI-THRESHOLD THRESHOLD LOGIC

K. S. Fu and W. C. W. Mow, Contract ONR-N00016-66-C0076,A04 Joint Services Electronic Program
ESTIMATION OF SONAR TARGET PARAMETERS

G. R. Cooper and J. U. Kincaid, National Science Foundation Grant GK-189, PRF 4243

ON GENERALIZATIONS OF ADAPTIVE ALGORITHMS AND APPLICATION OF THE FUZZY SETS
CONCEPTS TO PATTERN CLASSIFICATION
K. S. Fu and W. G. Wee, National Science Foundation Grant GK— 696, PRF 4502

COMPUTER AIDED ANALYS!IS AND SYNTHESIS OF MULTIVALUED MEMORYLESS NETWORKS
L. O. Chua and W. H. Stellhorn, National Science Foundation Grant GK-01235, Joint Services
Electronics Program Contract ONR—N00016—-66--C0076-~A04, PRF 4711

OPTIMUM FINITE SEQUENTIAL PATTERN RECOGNITION
K. S. Fu and G. P. Cardillo, National Science Foundation Grant GK—-696, PRF 4502




